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In this paper, a new algorithm is presented which is useful for computing the auto-
morphism group of chemical graphs. We compare our algorithm with those of Druffel,
Schmidt and Wang. It is proved that the running time of the present algorithm is better
than the mentioned algorithms. Also, the automorphism group of Euclidean graph of iso-
mers for the fullerenes C180, C240, C260, C320, C500 and C720 are computed.
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An important area of research in nano science and nano technology is the
carbon-based physics, more specifically the fullerene physics. The fullerene
era was started in 1985 with the discovery of a stable C60 cluster and its in-
terpretation as a cage structure with the familiar shape of a soccer ball, by
Kroto et al.1 The well-known fullerene, the C60 molecule, is a closed-cage
carbon molecule with three-coordinate carbon atoms tiling the spherical or
nearly spherical surface with a truncated icosahedral structure formed by 20
hexagonal and 12 pentagonal rings2.

Fullerene chemistry is nowadays a well-established field of both theoreti-
cal and experimental investigations. The initial fascinating appeal, coming
from their beautiful symmetry shifted later to real chemistry.

Combinatorial enumerations have found a wide-ranging application in
chemistry, since chemical structural formulas can be regarded as graphs or
three-dimensional objects. Fullerenes are molecules in the form of polyhe-
dral closed cages made up entirely of n three coordinate carbon atoms and
having 12 pentagonal and (n/2 – 10) hexagonal faces, where n is equal or
greater than 20. To compute the number of isomers of fullerene, we must
compute the symmetry of fullerenes under consideration. Fripertinger3

computed the symmetry of some fullerenes to calculate the number of
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C60HkCl60–k molecules and Balasubramanian4 applied the same approach to
compute the number of C60H36 isomers.

Balasubramanian5–13 in some leading papers considered the Euclidean
matrix of a chemical graph to find its symmetry. He proved that for com-
puting the symmetry of a molecule, it is sufficient to solve the matrix equa-
tion PtEP = E, where E is the Euclidean matrix of the molecule under
consideration and P varies on the set of all permutation matrices with the
same dimension as E. He computed the Euclidean graphs and auto-
morphism group for benzene, eclipsed and staggered forms of ethane and
eclipsed and staggered forms of ferrocene5.

Ashrafi14 introduced an efficient algorithm for computing the symmetry
of molecules. Using this algorithm in ref.15, the authors computed the sym-
metry of fullerene C80 with the Ih point group symmetry. The goal of this
paper is to improve this algorithm for computing the symmetry of mole-
cules16. Using this algorithm, the symmetries of some big molecules are
computed.

Throughout this paper, only complete weighted finite graphs are investi-
gated. Our notation is standard and taken mainly from refs17,18. We encour-
age the reader to consult refs1,2,19 for information on fullerenes.

THEORY

We first describe some definitions and notations which will be kept
throughout.

A weighted graph G = (V, E, w) is a combinatorial object consisting of an
arbitrary set V = V(G) of vertices, a set E = E(G) of unordered pairs {x,y} = xy
of distinct vertices of G called edges, and a weighting function w, where w:
V(G) → R assigns positive real numbers (weights) to edges. An auto-
morphism of a weighted graph G is a permutation g of the vertex set of G
with the property that: (i) for any vertices u and v, g(u) and g(v) are adjacent
if and only if u is adjacent to v; (ii) for every edge e, w(g(e)) = w(e). The set of
all automorphisms of a graph G, with the operation of composition of per-
mutations, is a permutation group on V(G), denoted Aut(G).

An Euclidean graph20 is a weighted graph related to a molecule with the
adjacency matrix D = [dij], where for i ≠ j, dij is the Euclidean distance
between the nuclei i and j. In this matrix dii can be taken as zero if all the
nuclei are equivalent. Otherwise, one may introduce different weights for
different nuclei.

By symmetry we mean the automorphism group symmetry of a graph.
Randic21,22, showed that a graph can be depicted in different ways such that
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its point group symmetry or three-dimensional (3D) perception may differ,
but the underlying connectivity symmetry is still the same as characterized
by the automorphism group of the graph.

For a permutation σ on n objects, the corresponding permutation matrix
is an n × n matrix Pσ given by Pσ = [xij], xij = 1 if i = σ(j) and 0 otherwise. It is
easy to see that PσPτ = Pστ, for any two permutations σ and τ on n objects,
and so the set of all n × n permutation matrices is a group isomorphic to the
symmetric group Sn on n symbols. It is a well-known fact that a permuta-
tion σ of the vertices of a graph G belongs to its automorphism group if it
satisfies Pσ

tAPσ = A, where A is the adjacency matrix of G. Suppose Aut(G) =
{σ1, ..., σm}. The matrix SG = [sij], where sij = σi(j) is called a solution matrix
for G. Clearly, for computing the automorphism group of G, it is enough to
calculate a solution matrix for G.

In mathematics, groups are often used to describe symmetries of objects.
This is formalized by the notion of a group action: every element of the
group “acts” like a bijective map (or “symmetry”) on some set. To clarify
this notion, we assume that G is a group and X is a set. G is said to act on X
when there is a map φ : G × X → X such that all elements x ∈ X, (i) φ(e,x) = x
where e is the identity element of G, and, (ii) φ(g, φ(h,x)) = φ(gh,x) for all
g, h ∈ G. In this case, G is called a transformation group, X is called a G-set,
and φ is called the group action. For simplicity we define gx = φ(g,x).

In a group action, a group permutes the elements of X. The identity does
nothing, while a composition of actions corresponds to the action of the
composition. For a given X, the set {gx | g ∈ G}, where the group action
moves x, is called the group orbit of x. The subgroup which fixes is the iso-
tropy group of x.

Following Druffel, Schmidt and Wang23, the collection automorphisms of
a given graph G with vertices {ν1, ν2, ..., νn} which leaves ν1 through νi–1 in-
variant and map νi onto νk, i ≤ k ≤ n, is denoted by Φi,k. It is easy to see that
Φi,k, i < k may be empty and it does not contain the identity automorphism.
Then the set S containing one element from each set Φi,k is non-empty and
i < k forms a generating set for Aut(G). If Sk denote the set of all auto-
morphisms in S which leave ν1 through νk–1 invariant and map νk onto νj
for some j ≠ k then Aut(G) has exactly (s1 + 1)(s2 + 1)...(sn + 1) auto-
morphisms, where sk = |Sk|, i ≤ k ≤ n.

The symmetry of a graph does not need to be the same (i.e. isomorphic
to) the molecular point group symmetry. However, it does represent the
maximal symmetry which the geometrical realization of a given topological
structure may possess. The automorphisms have other advantages such as
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in generating nuclear spin species, NMR spectra, nuclear spin statistics in
molecular spectroscopy, chirality and chemical isomerism.

Now we discuss techniques that are useful in finding symmetry of mole-
cules. We begin with some important results that, in certain situations, are
very effective in establishing automorphisms of Euclidean graphs14.

Lemma 1. Suppose A = [aij] and B = [bij] are two matrices and Pσ is a per-
mutation matrix. If B = PσA(Pσ)t, σ(i) = r and σ(j) = s, then ars = bij.

Lemma 2. Let A = [aij] be the adjacency matrix of a weighted graph and σ
be a permutation such that A = PσA(Pσ)t and σ maps i1 → j1, i2 → j2, ..., it →
jt. Then we have:
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Lemma 3. Let G be an Euclidean graph, A = Aut(G) and O1, O2, ..., Ot be or-
bits of the action of A on the vertices of G. Then for every α ∈ A and every
positive integer i, 1 ≤ i ≤ t, α(Oi) = Oi.

RESULTS AND DISCUSSION

Our computations of symmetry properties of molecules were carried out
with the use of GAP 24 (GAP stands for Groups, Algorithms and Program-
ming). The name was chosen to reflect the aim of the system, which is a
group theoretical software for solving computational problems in computa-
tional group theory. This software was constructed by the GAP team in
Aachen. The motivation for this study is outlined in ref.25 and the reader is
encouraged to consult this paper for background material as well as basic
computational techniques.

MATLAB 26 is an important software for working with matrices. In ref.15,
the authors wrote a MATLAB program for computing symmetry of fullerene
molecule C80. We apply Lemmas 1, 2 and 3, to improve this MATLAB pro-
gram for computing a solution matrix for the automorphism group of Eu-
clidean graphs. The main difference between our two MATLAB programs is
that in the second program any vertex x of a graph can be mapped only on
the vertices of the orbit {gx | g ∈ G}. This causes to find better running time
in computing the symmetry group of molecules. We can also write another
MATLAB Program based on Druffel, Schmidt and Wang’s paper23. The
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MATLAB programs used in this paper are available upon the request from
the author.

To compare these programs, we compute the symmetry of seven big ful-
lerenes C180, C240, C260, C320, C500, C540 and C720. In Table I, we determine
the running time of three programs for computing the symmetry of these
fullerenes. Also, we calculate the order of symmetry group. The Cartesian
coordinates of these fullerenes are taken from the homepage of Dr S. Weber
at http://jcrystal.com/steffenweber/.

In what follows, we explain only our calculations on symmetry of C540.
Suppose A is a solution matrix computed by our MATLAB program. To
compute the automorphism group of Euclidean graph of this fullerene, we
need a GAP program as follows:

B:=[];
N:=Size(A);
for i in [1,2..N] do

d:=PermListList(A[1],A[i]);
Add(B,d);

od;
G:=AsGroup(B);
GeneratorsOfGroup(G);

By our calculations the automorphism group of the Euclidean graph of
C500 and C720 are trivial. We now apply our programs to compute a generat-
ing set for the automorphism group of C540. Suppose {X, Y, Z} is a generat-
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TABLE I
Comparison of running times for three algorithms

Fullerene Program 1 Program 2 Our last program Group order

C180 390.531 479.782 1070 120

C240 2009 2783.1 4334.6 120

C260 489.078 773.125 4760 60

C320 3775 5087.1 13801 120

C500 128.078 2785.2 16006 1

C540 22841.61 31289.58 >100000 120

C720 701.921 1321.43 2464.8 1



ing set for the automorphism group of this fullerene. Our calculations give
the following permutations as a generating set for the symmetry group of
this fullerene:

X:= (2,5)(3,4)(6,10)(7,9)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,1)
(32,35)(33,34)(36,40)(37,39)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)
(50,51)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,104)(68,103)(69,108)(70,107)
(71,106)(72,105)(73,114)(74,113)(75,112)(76,111)(77,110)(78,109)(79,84)(80,83)(81,82)
(85,86)(87,90)(88,89)(91,96)(92,95)(93,94)(115,138)(116,137)(117,136)(118,135)(119,134)
(120,133)(121,140)(122,139)(123,144)(124,143)(125,142)(126,141)(127,150)(128,149)
(129,148)(130,147)(131,146)(132,145)(151,174)(152,173)(153,172)(154,171)(155,170)
(156,169)(157,176)(158,175)(159,180)(160,179)(161,178)(162,177)(163,186)(164,185)
(165,184)(166,183)(167,182)(168,181)(187,228)(188,227)(189,226)(190,225)(191,224)
(192,223)(193,230)(194,229)(195,234)(196,233)(197,232)(198,231)(199,240)(200,239)
(201,238)(202,237)(203,236)(204,235)(205,210)(206,209)(207,208)(211,212)(213,216)
(214,215)(217,222)(218,221)(219,220)(241,314)(242,313)(243,318)(244,317)(245,316)
(246,315)(247,321)(248,322)(249,319)(250,320)(251,324)(252,323)(253,326)(254,325)
(255,330)(256,329)(257,328)(258,327)(259,300)(260,299)(261,298)(262,297)(263,296)
(264,295)(265,302)(266,301)(267,306)(268,305)(269,304)(270,303)(271,312)(272,311)
(273,310)(274,309)(275,308)(276,307)(277,278)(279,282)(280,281)(283,285)(284,286)
(287,288)(289,290)(291,294)(292,293)(331,404)(332,403)(333,408)(334,407)(335,406)
(336,405)(337,411)(338,412)(339,409)(340,410)(341,414)(342,413)(343,416)(344,415)
(345,420)(346,419)(347,418)(348,417)(349,386)(350,385)(351,390)(352,389)(353,388)
(354,387)(355,393)(356,394)(357,391)(358,392)(359,396)(360,395)(361,398)(362,397)
(363,402)(364,401)(365,400)(366,399)(367,372)(368,371)(369,370)(373,374)(375,378)
(376,377)(379,384)(380,383)(381,382)(421,433)(422,434)(423,435)(424,436)(425,446)
(426,445)(427,448)(428,447)(429,442)(430,441)(431,444)(432,443)(437,438)(439,440)
(453,458)(454,457)(455,460)(456,459)(465,478)(466,477)(467,480)(468,479)(469,474)
(470,473)(471,476)(472,475)(481,489)(482,490)(483,491)(484,492)(485,498)(486,497)
(487,500)(488,499)(493,494)(495,496)(501,517)(502,518)(503,519)(504,520)(505,522)
(506,521)(507,524)(508,523)(509,513)(510,514)(511,515)(512,516)(525,537)(526,538)
(527,539)(528,540)(529,533)(530,534)(531,535)(532,536),

Y:= (1,2)(3,5)(6,15)(7,14)(8,13)(9,12)(10,11)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)
(31,35)(32,34)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)
(47,49)(61,120)(62,119)(63,118)(64,117)(65,116)(66,115)(67,122)(68,121)(69,126)(70,125)
(71,124)(72,123)(73,132)(74,131)(75,130)(76,129)(77,128)(78,127)(79,102)(80,101)(81,100)
(82,99)(83,98)(84,97)(85,104)(86,103)(87,108)(88,107)(89,106)(90,105)(91,114)(92,113)
(93,112)(94,111)(95,110)(96,109)(133,138)(134,137)(135,136)(139,140)(141,144)(142,143)
(145,150)(146,149)(147,148)(151,156)(152,155)(153,154)(157,158)(159,162)(160,161)
(163,168)(164,167)(165,166)(169,228)(170,227)(171,226)(172,225)(173,224)(174,223)
(175,230)(176,229)(177,234)(178,233)(179,232)(180,231)(181,240)(182,239)(183,238)
(184,237)(185,236)(186,235)(187,210)(188,209)(189,208)(190,207)(191,206)(192,205)
(193,212)(194,211)(195,216)(196,215)(197,214)(198,213)(199,222)(200,221)(201,220)
(202,219)(203,218)(204,217)(241,278)(242,277)(243,282)(244,281)(245,280)(246,279)
(247,285)(248,286)(249,283)(250,284)(251,288)(252,287)(253,290)(254,289)(255,294)
(256,293)(257,292)(258,291)(259,264)(260,263)(261,262)(265,266)(267,270)(268,269)
(271,276)(272,275)(273,274)(295,404)(296,403)(297,408)(298,407)(299,406)(300,405)
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(301,411)(302,412)(303,409)(304,410)(305,414)(306,413)(307,416)(308,415)(309,420)
(310,419)(311,418)(312,417)(313,386)(314,385)(315,390)(316,389)(317,388)(318,387)
(319,393)(320,394)(321,391)(322,392)(323,396)(324,395)(325,398)(326,397)(327,402)
(328,401)(329,400)(330,399)(331,372)(332,371)(333,370)(334,369)(335,368)(336,367)
(337,374)(338,373)(339,378)(340,377)(341,376)(342,375)(343,384)(344,383)(345,382)
(346,381)(347,380)(348,379)(349,350)(351,354)(352,353)(355,357)(356,358)(359,360)
(361,362)(363,366)(364,365)(421,441)(422,442)(423,443)(424,444)(425,454)(426,453)
(427,456)(428,455)(429,450)(430,449)(431,452)(432,451)(437,446)(438,445)(439,448)
(440,447)(457,458)(459,460)(461,470)(462,469)(463,472)(464,471)(465,466)(467,468)
(473,489)(474,490)(475,491)(476,492)(477,498)(478,497)(479,500)(480,499)(485,494)
(486,493)(487,496)(488,495)(501,509)(502,510)(503,511)(504,512)(505,514)(506,513)
(507,516)(508,515)(517,537)(518,538)(519,539)(520,540)(521,533)(522,534)(523,535)
(524,536)(525,529)(526,530)(527,531)(528,532),

Z:= (1,6,49,45,18)(2,7,50,41,19)(3,8,46,42,20)(4,9,47,43,16)(5,10,48,44,17)(11,12,13,14,15)
(21,30,52,35,39)(22,26,53,31,40)(23,27,54,32,36)(24,28,55,33,37)(25,29,51,34,38)
(56,60,59,58,57)(61,137,259,241,403)(62,138,260,242,404)(63,133,261,243,405)
(64,134,262,244,406)(65,135,263,245,407)(66,136,264,246,408)(67,144,265,247,409)
(68,143,266,248,410)(69,140,267,249,411)(70,139,268,250,412)(71,141,269,251,413)
(72,142,270,252,414)(73,149,271,253,415)(74,150,272,254,416)(75,145,273,255,417)
(76,146,274,256,418)(77,147,275,257,419)(78,148,276,258,420)(79,117,277,191,389)
(80,118,278,192,390)(81,119,279,187,385)(82,120,280,188,386)(83,115,281,189,387)
(84,116,282,190,388)(85,124,283,198,396)(86,123,284,197,395)(87,125,285,194,392)
(88,126,286,193,391)(89,122,287,195,393)(90,121,288,196,394)(91,129,289,203,401)
(92,130,290,204,402)(93,131,291,199,397)(94,132,292,200,398)(95,127,293,201,399)
(96,128,294,202,400)(97,299,209,171,369)(98,300,210,172,370)(99,295,205,173,371)
(100,296,206,174,372)(101,297,207,169,367)(102,298,208,170,368)(103,306,216,178,376)
(104,305,215,177,375)(105,302,212,179,377)(106,301,211,180,378)(107,303,213,176,374)
(108,304,214,175,373)(109,311,221,183,381)(110,312,222,184,382)(111,307,217,185,383)
(112,308,218,186,384)(113,309,219,181,379)(114,310,220,182,380)(151,351,333,317,227)
(152,352,334,318,228)(153,353,335,313,223)(154,354,336,314,224)(155,349,331,315,225)
(156,350,332,316,226)(157,358,340,324,234)(158,357,339,323,233)(159,359,341,320,230)
(160,360,342,319,229)(161,356,338,321,231)(162,355,337,322,232)(163,363,345,329,239)
(164,364,346,330,240)(165,365,347,325,235)(166,366,348,326,236)(167,361,343,327,237)
(168,362,344,328,238)(421,450,509,486,538)(422,449,510,485,537)(423,452,511,488,540)
(424,451,512,487,539)(425,430,458,501,506)(426,429,457,502,505)(427,432,460,503,508)
(428,431,459,504,507)(433,453,494,474,534)(434,454,493,473,533)(435,455,496,476,536)
(436,456,495,475,535)(437,442,513,481,478)(438,441,514,482,477)(439,444,515,483,480)
(440,443,516,484,479)(445,517,489,462,530)(446,518,490,461,529)(447,519,491,464,532)
(448,520,492,463,531)(465,526,522,498,470)(466,525,521,497,469)(467,528,524,500,472)
(468,527,523,499,471).

We record in the first and second columns of Table I the running time of
our two programs. The third column of this table shows the running time
of our last program, see ref.15 From this table, we can see that our new algo-
rithm and MATLAB Program has the best running time of the three algo-
rithms.
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